\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{9/2}} \, dx\) [2052]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 39, antiderivative size = 233 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\frac {5 c d \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (c d^2-a e^2\right )^{3/2} \arctan \left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{7/2}} \]

[Out]

5/3*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e^2/(e*x+d)^(3/2)-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/e/(e
*x+d)^(7/2)+5*c*d*(-a*e^2+c*d^2)^(3/2)*arctan(e^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^(
1/2)/(e*x+d)^(1/2))/e^(7/2)+5*c*d*(a-c*d^2/e^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {676, 678, 674, 211} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\frac {5 c d \left (c d^2-a e^2\right )^{3/2} \arctan \left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{7/2}}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}+\frac {5 c d \left (a-\frac {c d^2}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e \sqrt {d+e x}} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x]

[Out]

(5*c*d*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*Sqrt[d + e*x]) + (5*c*d*(a*d*e + (c*d
^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*e^2*(d + e*x)^(3/2)) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(e*(
d + e*x)^(7/2)) + (5*c*d*(c*d^2 - a*e^2)^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(S
qrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/e^(7/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 674

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 676

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + p + 1))), x] - Dist[c*(p/(e^2*(m + p + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2
)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[
p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {(5 c d) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx}{2 e} \\ & = \frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}-\frac {\left (5 c d \left (c d^2-a e^2\right )\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx}{2 e^2} \\ & = -\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {\left (5 c d \left (c d^2-a e^2\right )^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 e^3} \\ & = -\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {\left (5 c d \left (c d^2-a e^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{e^2} \\ & = -\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.76 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {e} \sqrt {a e+c d x} \left (-3 a^2 e^4+2 a c d e^2 (10 d+7 e x)+c^2 d^2 \left (-15 d^2-10 d e x+2 e^2 x^2\right )\right )+15 c d \left (c d^2-a e^2\right )^{3/2} (d+e x) \arctan \left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )\right )}{3 e^{7/2} \sqrt {a e+c d x} (d+e x)^{3/2}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[e]*Sqrt[a*e + c*d*x]*(-3*a^2*e^4 + 2*a*c*d*e^2*(10*d + 7*e*x) + c^2*d^2*(
-15*d^2 - 10*d*e*x + 2*e^2*x^2)) + 15*c*d*(c*d^2 - a*e^2)^(3/2)*(d + e*x)*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/S
qrt[c*d^2 - a*e^2]]))/(3*e^(7/2)*Sqrt[a*e + c*d*x]*(d + e*x)^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(510\) vs. \(2(207)=414\).

Time = 2.54 (sec) , antiderivative size = 511, normalized size of antiderivative = 2.19

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a^{2} c d \,e^{5} x -30 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a \,c^{2} d^{3} e^{3} x +15 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c^{3} d^{5} e x +15 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a^{2} c \,d^{2} e^{4}-30 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a \,c^{2} d^{4} e^{2}+15 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c^{3} d^{6}-2 c^{2} d^{2} e^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}-14 a c d \,e^{3} x \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}+10 c^{2} d^{3} e x \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}+3 \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, a^{2} e^{4}-20 \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, a c \,d^{2} e^{2}+15 \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, c^{2} d^{4}\right )}{3 \left (e x +d \right )^{\frac {3}{2}} \sqrt {c d x +a e}\, e^{3} \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\) \(511\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a^2*c*d*e^5*x-30*arc
tanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*c^2*d^3*e^3*x+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2
)*e)^(1/2))*c^3*d^5*e*x+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a^2*c*d^2*e^4-30*arctanh(e*(c*
d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*c^2*d^4*e^2+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*
c^3*d^6-2*c^2*d^2*e^2*x^2*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)-14*a*c*d*e^3*x*(c*d*x+a*e)^(1/2)*((a*e^2-c
*d^2)*e)^(1/2)+10*c^2*d^3*e*x*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)+3*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^
(1/2)*a^2*e^4-20*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)*a*c*d^2*e^2+15*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^
(1/2)*c^2*d^4)/(e*x+d)^(3/2)/(c*d*x+a*e)^(1/2)/e^3/((a*e^2-c*d^2)*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.40 (sec) , antiderivative size = 579, normalized size of antiderivative = 2.48 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\left [\frac {15 \, {\left (c^{2} d^{5} - a c d^{3} e^{2} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{4} e - a c d^{2} e^{3}\right )} x\right )} \sqrt {-\frac {c d^{2} - a e^{2}}{e}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} e \sqrt {-\frac {c d^{2} - a e^{2}}{e}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, {\left (2 \, c^{2} d^{2} e^{2} x^{2} - 15 \, c^{2} d^{4} + 20 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4} - 2 \, {\left (5 \, c^{2} d^{3} e - 7 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{6 \, {\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}}, -\frac {15 \, {\left (c^{2} d^{5} - a c d^{3} e^{2} + {\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{4} e - a c d^{2} e^{3}\right )} x\right )} \sqrt {\frac {c d^{2} - a e^{2}}{e}} \arctan \left (\frac {\sqrt {e x + d} \sqrt {\frac {c d^{2} - a e^{2}}{e}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\right ) - {\left (2 \, c^{2} d^{2} e^{2} x^{2} - 15 \, c^{2} d^{4} + 20 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4} - 2 \, {\left (5 \, c^{2} d^{3} e - 7 \, a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{3 \, {\left (e^{5} x^{2} + 2 \, d e^{4} x + d^{2} e^{3}\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

[1/6*(15*(c^2*d^5 - a*c*d^3*e^2 + (c^2*d^3*e^2 - a*c*d*e^4)*x^2 + 2*(c^2*d^4*e - a*c*d^2*e^3)*x)*sqrt(-(c*d^2
- a*e^2)/e)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*
sqrt(e*x + d)*e*sqrt(-(c*d^2 - a*e^2)/e))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(2*c^2*d^2*e^2*x^2 - 15*c^2*d^4 + 20*
a*c*d^2*e^2 - 3*a^2*e^4 - 2*(5*c^2*d^3*e - 7*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*
x + d))/(e^5*x^2 + 2*d*e^4*x + d^2*e^3), -1/3*(15*(c^2*d^5 - a*c*d^3*e^2 + (c^2*d^3*e^2 - a*c*d*e^4)*x^2 + 2*(
c^2*d^4*e - a*c*d^2*e^3)*x)*sqrt((c*d^2 - a*e^2)/e)*arctan(sqrt(e*x + d)*sqrt((c*d^2 - a*e^2)/e)/sqrt(c*d*e*x^
2 + a*d*e + (c*d^2 + a*e^2)*x)) - (2*c^2*d^2*e^2*x^2 - 15*c^2*d^4 + 20*a*c*d^2*e^2 - 3*a^2*e^4 - 2*(5*c^2*d^3*
e - 7*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(e^5*x^2 + 2*d*e^4*x + d^2*e^3)
]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )}^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/(e*x + d)^(9/2), x)

Giac [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 358, normalized size of antiderivative = 1.54 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\frac {\frac {15 \, {\left (c^{4} d^{6} e {\left | e \right |} - 2 \, a c^{3} d^{4} e^{3} {\left | e \right |} + a^{2} c^{2} d^{2} e^{5} {\left | e \right |}\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \frac {2 \, {\left (6 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{3} d^{4} e^{3} {\left | e \right |} - 6 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{2} d^{2} e^{5} {\left | e \right |} - {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{2} d^{2} e^{2} {\left | e \right |}\right )}}{e^{3}} - \frac {3 \, {\left (\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{4} d^{6} e {\left | e \right |} - 2 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{3} d^{4} e^{3} {\left | e \right |} + \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a^{2} c^{2} d^{2} e^{5} {\left | e \right |}\right )}}{{\left (e x + d\right )} c d e}}{3 \, c d e^{5}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

1/3*(15*(c^4*d^6*e*abs(e) - 2*a*c^3*d^4*e^3*abs(e) + a^2*c^2*d^2*e^5*abs(e))*arctan(sqrt((e*x + d)*c*d*e - c*d
^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3) - 2*(6*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^3*
d^4*e^3*abs(e) - 6*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^2*d^2*e^5*abs(e) - ((e*x + d)*c*d*e - c*d^2*e +
 a*e^3)^(3/2)*c^2*d^2*e^2*abs(e))/e^3 - 3*(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^4*d^6*e*abs(e) - 2*sqrt((
e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^3*d^4*e^3*abs(e) + sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a^2*c^2*d^2*e
^5*abs(e))/((e*x + d)*c*d*e))/(c*d*e^5)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^{9/2}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2), x)